
Technologies for Web Crawling,
Indexing and Search

Traian Rebedea

19-Jun-14 Open Source Summer School 2014 1

Information Retrieval
Search Basics

Information Retrieval

• Information Retrieval (IR) is finding material
(usually documents) of an unstructured nature
(usually text) that satisfies an information
need from within large collections (usually
stored on computers).

– Librarians

– Now also in XML and DB

– Focus on user

3

4

Unstructured (text) vs. structured (database)
data in 1996

0

20

40

60

80

100

120

140

160

Data volume Market Cap

Unstructured

Structured

Unstructured (text) vs. structured (database)
data in 2009

5

http://www.yahoo.com/
http://www.yahoo.com/

6

Unstructured data in 1680

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines
containing Calpurnia?

– Slow (for large corpora)

– NOT Calpurnia is non-trivial

– Other operations (e.g., find the word Romans near
countrymen) not feasible

– Ranked retrieval (best documents to return) also hard

Solution: Term-document incidence

1 if play contains

word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Brutus AND Caesar but NOT

Calpurnia

8

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented)
bitwise AND.

• 110100 AND 110111 AND 101111 = 100100.

9

Answers to query

• Antony and Cleopatra, Act III, Scene ii
• Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

• When Antony found Julius Caesar dead,

• He cried almost to roaring; and he wept

• When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
• Lord Polonius: I did enact Julius Caesar I was killed i' the

• Capitol; Brutus killed me.

SIGIR 2005 10

Basic assumptions of Information Retrieval

• Corpus: Fixed document collection

• Goal: Retrieve documents with information
that is relevant to user’s information need and
helps him complete a task

The classic search model

Corpus

TASK

 Info Need

Query

 Verbal

form

Results

SEARCH

ENGINE

Query

Refinement

Get rid of mice in a

politically correct way

Info about removing mice

without killing them

 How do I trap mice alive?

mouse trap

Mis-conception

Mis-translation

Mis-formulation

11

How good are the retrieved docs?

• Precision : Fraction of retrieved docs that are
relevant to user’s information need

• Recall : Fraction of relevant docs in corpus
that are retrieved

• More precise definitions and measurements
to follow in later lectures

12

13

Bigger corpora

• Consider N = 1M documents, each with about
1K terms.

• Avg. 6 bytes/term incl. spaces/punctuation
(EN)

– 6GB of data in the documents.

• Say there are m = 500K distinct terms among
these.

14

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.

– matrix is extremely sparse.

• What’s a better representation?

– We only record the 1 positions.

Why?

15

Inverted index

• For each term T, we must store a list of all
documents that contain T.

• Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

What happens if the word Caesar

is added to document 14?

16

Inverted index

• Linked lists generally preferred to arrays

– Dynamic space allocation

– Insertion of terms into documents easy

– Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists

Sorted by docID (more later on why).

Posting

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens.
friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to

be indexed.

Friends, Romans, countrymen.

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius

Caesar I was killed

i' the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2
was 2

ambitious 2

Indexer steps

• Sort by terms.

Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2

Core indexing step.

Indexer steps: Dictionary & Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Doc. frequency
information is added.

Why frequency?
Will discuss later.

Sec. 1.2

21

• Where do we pay in storage?

Doc # Freq

2 1

2 1

1 1

2 1

1 1

1 1

2 2

1 1

1 1

2 1

1 2

1 1

2 1

1 1

1 2

2 1

1 1

2 1

2 1

1 1

2 1

2 1

2 1

1 1

2 1

2 1

Term N docs Coll freq

ambitious 1 1

be 1 1

brutus 2 2

capitol 1 1

caesar 2 3

did 1 1

enact 1 1

hath 1 1

I 1 2

i' 1 1

it 1 1

julius 1 1

killed 1 2

let 1 1

me 1 1

noble 1 1

so 1 1

the 2 2

told 1 1

you 1 1

was 2 2

with 1 1

Pointers

Terms

Will quantify

the storage,

later.

22

The index we just built

• How do we process a query?

23

Query processing: AND

• Consider processing the query:

Brutus AND Caesar

– Locate Brutus in the Dictionary;

• Retrieve its postings.

– Locate Caesar in the Dictionary;

• Retrieve its postings.

– “Merge” the two postings:
128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

24

34

128 2 4 8 16 32 64

1 2 3 5 8 13 21

The merge

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar
2 8

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Intersecting two postings lists
(a “merge” algorithm)

25

Ranked Search

Ranked retrieval

• Thus far, our queries have all been Boolean.

– Documents either match or don’t.

• Good for expert users with precise understanding of their

needs and the collection.

– Also good for applications: Applications can easily consume

1000s of results.

• Not good for the majority of users.

– Most users incapable of writing Boolean queries (or they are, but

they think it’s too much work).

– Most users don’t want to wade through 1000s of results.

• This is particularly true of web search.

Facts

• The average query length on current

search engines is 2.4 words

• Over 40% of the user queries are single

words

• About 80+% of the users look only at the

first page of results, 95% look at the first

two pages, almost everybody looks only at

the first three

Problem with Boolean search:

feast or famine

• Boolean queries often result in either too few

(=0) or too many (1000s) results.

• Query 1: “standard user dlink 650” → 200,000

hits

• Query 2: “standard user dlink 650 no card
found”: 0 hits

• It takes a lot of skill to come up with a query

that produces a manageable number of hits.

– AND gives too few; OR gives too many

Ranked retrieval models

• Rather than a set of documents satisfying a query

expression, in ranked retrieval models, the system

returns an ordering over the (top) documents in the

collection with respect to a query

• Free text queries: Rather than a query language of

operators and expressions, the user’s query is just one

or more words in a human language

• In principle, there are two separate choices here, but in

practice, ranked retrieval models have normally been

associated with free text queries and vice versa

30

Feast or famine: not a problem in

ranked retrieval

• When a system produces a ranked result

set, large result sets are not an issue

– Indeed, the size of the result set is not an

issue

– We just show the top k (≈ 10) results

– We don’t overwhelm the user

– Premise: the ranking algorithm works

Scoring as the basis of ranked

retrieval

• We wish to return in order the documents

most likely to be useful to the searcher

• How can we rank-order the documents in

the collection with respect to a query?

• Assign a score – say in [0, 1] – to each

document

• This score measures how well document

and query “match”.

Query-document matching scores

• We need a way of assigning a score to a
query/document pair

• Let’s start with a one-term query

• If the query term does not occur in the
document: score should be 0

• The more frequent the query term in the
document, the higher the score (should be)

• We will look at a number of alternatives for
this.

Term-document count matrices

• Consider the number of occurrences of a

term in a document:

– Each document is a count vector in ℕv: a

column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Bag of words model

• Vector representation doesn’t consider the
ordering of words in a document

• John is quicker than Mary and Mary is quicker
than John have the same vectors

• This is called the bag of words model.

• In a sense, this is a step back: The positional
index was able to distinguish these two
documents.

• We will look at “recovering” positional information
later in this course.

• For now: bag of words model

Term frequency tf

• The term frequency tft,d of term t in document d is
defined as the number of times that t occurs in d.

• We want to use tf when computing query-
document match scores. But how?

• Raw term frequency is not what we want:

– A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the
term.

– But not 10 times more relevant.

• Relevance does not increase proportionally with
term frequency.

NB: frequency = count in IR

Log-frequency weighting

• The log frequency weight of term t in d is

• 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

• Score for a document-query pair: sum over
terms t in both q and d:

• score

• The score is 0 if none of the query terms is
present in the document.

otherwise 0,

0 tfif, tflog 1

10 t,dt,d

t,dw

dqt dt) tflog (1 ,

Document frequency

• Rare terms are more informative than
frequent terms

– Recall stop words

• Consider a term in the query that is rare in
the collection (e.g., arachnocentric)

• A document containing this term is very
likely to be relevant to the query
arachnocentric information

• → We want a high weight for rare terms like
arachnocentric.

Document frequency, continued

• Frequent terms are less informative than rare terms

• Consider a query term that is frequent in the collection

(e.g., high, increase, line)

• A document containing such a term is more likely to be

relevant than a document that doesn’t

• But it’s not a sure indicator of relevance.

• → For frequent terms, we want high positive weights for

words like high, increase, and line

• But lower weights than for rare terms.

• We will use document frequency (df) to capture this.

idf weight

• dft is the document frequency of t: the number of

documents that contain t

– dft is an inverse measure of the informativeness of t

– dft N

• We define the idf (inverse document frequency) of t by

– We use log (N/dft) instead of N/dft to “dampen” the effect of idf.

)/df(log idf 10 tt N

Will turn out the base of the log is

immaterial.

idf example, suppose N = 1 million

term dft idft

calpurnia 1

animal 100

sunday 1,000

fly 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

)/df(log idf 10 tt N

Effect of idf on ranking

• Does idf have an effect on ranking for one-
term queries, like

– iPhone

• idf has no effect on ranking one term queries

– idf affects the ranking of documents for queries
with at least two terms

– For the query capricious person, idf weighting
makes occurrences of capricious count for much
more in the final document ranking than
occurrences of person.

42

tf-idf weighting

• The tf-idf weight of a term is the product of its tf
weight and its idf weight.

• Best known weighting scheme in information
retrieval

– Note: the “-” in tf-idf is a hyphen, not a minus sign!

– Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a
document

• Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt

Final ranking of documents for a

query

44

Score(q,d) tf.idft,d
tqd

Exercise 1

• Which is the ranking for the following example?

 (python code)

• Query: “haina cine departe”

• Document collection:
– D1 = “Cine împarte, parte își face”

– D2 = “Cine se scoală de dimineață, departe ajunge”

– D3 = “Așchia nu sare departe de trunchi”

– D4 = “Omul face haina și nu haina pe om”

– D5 = “Cămașa e mai aproape de piele decât haina”

19-Jun-14 Open Data Summer School 2014 45

Web Crawling

Basic crawler operation

• Begin with known “seed” pages

• Fetch and parse them

– Extract URLs they point to

– Place the extracted URLs on a queue

• Fetch each URL on the queue and repeat

Crawling picture

Web

URLs crawled

and parsed

URLs frontier

Unseen Web

Seed
pages

Simple picture – complications

• Web crawling isn’t feasible with one machine
– All of the above steps distributed

• Even non-malicious pages pose challenges
– Latency/bandwidth to remote servers vary
– Webmasters’ stipulations

• How “deep” should you crawl a site’s URL hierarchy?
– Site mirrors and duplicate pages

• Malicious pages
– Spam pages
– Spider traps – including dynamically generated

• Politeness – don’t hit a server too often

What any crawler must do

• Be Polite: Respect implicit and explicit politeness
considerations for a website

– Only crawl pages you’re allowed to

– Respect robots.txt (more on this shortly)

• Be Robust: Be immune to spider traps and other
malicious behavior from web servers

What any crawler should do

• Be capable of distributed operation: designed to
run on multiple distributed machines

• Be scalable: designed to increase the crawl rate
by adding more machines

• Performance/efficiency: permit full use of
available processing and network resources

What any crawler should do

• Fetch pages of “higher quality” first

• Continuous operation: Continue fetching fresh copies
of a previously fetched page

• Extensible: Adapt to new data formats, protocols

Updated crawling picture

URLs crawled

and parsed
Unseen Web

Seed
Pages

URL frontier

Crawling thread

URL frontier

• Can include multiple pages from the same host

• Must avoid trying to fetch them all at the same time

• Must try to keep all crawling threads busy

Explicit and implicit politeness

• Explicit politeness: specifications from webmasters
on what portions of site can be crawled

– robots.txt

• Implicit politeness: even with no specification, avoid
hitting any site too often

Robots.txt

• Protocol for giving spiders (“robots”) limited
access to a website, originally from 1994

– www.robotstxt.org/wc/norobots.html

• Website announces its request on what can(not)
be crawled

– For a URL, create a file URL/robots.txt

– This file specifies access restrictions

http://www.robotstxt.org/wc/norobots.html

Robots.txt example

• No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Processing steps in crawling

• Pick a URL from the frontier
• Fetch the document at the URL
• Parse the URL

– Extract links from it to other docs (URLs)

• Check if URL has content already seen
– If not, add to indexes

• For each extracted URL
– Ensure it passes certain URL filter tests
– Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu, obey
robots.txt, etc.

Which one?

Basic crawl architecture

WWW

Fetch

DNS

Parse

Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

DNS (Domain Name Server)

• A lookup service on the internet
– Given a URL, retrieve its IP address

– Service provided by a distributed set of servers – thus,
lookup latencies can be high (even seconds)

• Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

• Solutions
– DNS caching

– Batch DNS resolver – collects requests and sends
them out together

Parsing: URL normalization

• When a fetched document is parsed, some of the extracted
links are relative URLs

• E.g., at http://en.wikipedia.org/wiki/Main_Page

we have a relative link to /wiki/Wikipedia:General_disclaimer
which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

• During parsing, must normalize (expand) such relative URLs

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

Content seen?

• Duplication is widespread on the web

• If the page just fetched is already in the index, do not
further process it

• This is verified using document fingerprints or
shingles

Filters and robots.txt

• Filters – regular expressions for URL’s to be crawled/not

• Once a robots.txt file is fetched from a site, need not
fetch it repeatedly
– Doing so burns bandwidth, hits web server

• Cache robots.txt files

Duplicate URL elimination

• For a non-continuous (one-shot) crawl, test to see if an
extracted+filtered URL has already been passed to the frontier

• For a continuous crawl – see details of frontier
implementation

Practical Web Crawling

• Apache Nutch (http://nutch.apache.org/)
– Java

– Distributed / Hadoop

– "Using Nutch for a one of scrape of a website is
like aiming a Tank at a mouse.“

• Scrapy (http://scrapy.org/)
– Python

– Not distributed

– Used for “scraping”, not for crawling

19-Jun-14 Open Source Summer School 2014 65

Practical Web Crawling (2)

• XPath is used to select elements form a DOM (Document
Object Model) created from XML / HTML documents

• Example from http://vichargrave.com/xml-parsing-with-dom-
using-c/

19-Jun-14 Open Source Summer School 2014 66

http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/
http://vichargrave.com/xml-parsing-with-dom-using-c/

XPath Examples

• /bookstore/book

• /bookstore/book[1]

• //book

• /bookstore/book/title[text()]

• /bookstore/book[1]/title

19-Jun-14 Open Source Summer School 2014 67

Exercise 2

• Crawl/scrap the news from one of the following:
BBC, CNN, Reuters, NY Times, Huffington Post,
Washington Post, Gandul, Hotnews, Adevarul, …

• Install Scrapy for Python
• Read the tutorial:

http://doc.scrapy.org/en/latest/intro/tutorial.ht
ml

• Write a program to extract the title and content
of a news item

• Write each news item (title and content) in a
different text file

19-Jun-14 Open Source Summer School 2014 68

http://doc.scrapy.org/en/latest/intro/tutorial.html
http://doc.scrapy.org/en/latest/intro/tutorial.html

Page Rank

The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes

 author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink

 describes the target page (textual context)

Page A
hyperlink

Page B Anchor

Indexing anchor text

• When indexing a document D, include anchor
text from links pointing to D.

www.ibm.com

Armonk, NY-based computer

giant IBM announced today

Joe’s computer hardware links

Compaq

HP

IBM

Big Blue today announced

record profits for the quarter

Query-independent ordering

• First generation: using link counts as simple
measures of popularity.

• Two basic suggestions:

– Undirected popularity:

• Each page gets a score = the number of in-links plus
the number of out-links (3+2=5).

– Directed popularity:

• Score of a page = number of its in-links (3).

Query processing

• First retrieve all pages meeting the text query
(say venture capital).

• Order these by their link popularity (either
variant on the previous page).

• More nuanced – use link counts as a measure
of static goodness, combined with text match
score

Spamming simple popularity

• Exercise: How do you spam each of the
following heuristics so your page gets a high
score?

• Each page gets a score = the number of in-
links plus the number of out-links.

• Score of a page = number of its in-links.

Pagerank scoring

• Imagine a browser doing a random walk on
web pages:

– Start at a random page

– At each step, go out of the current page along one
of the links on that page, equiprobably

• “In the steady state” each page has a long-
term visit rate - use this as the page’s score.

1/3

1/3

1/3

Not quite enough

• The web is full of dead-ends.

– Random walk can get stuck in dead-ends.

– Makes no sense to talk about long-term visit rates.

??

Teleporting

• At a dead end, jump to a random web page.

• At any non-dead end, with probability 10%, jump to
a random web page.

– With remaining probability (90%), go out on a
random link.

– 10% - a parameter.

Result of teleporting

• Now cannot get stuck locally.

• There is a long-term rate at which any page is visited.

• How do we compute this visit rate?

Web Graph

• Starting from the links, compute the weights

• This is the web graph matrix - A

• Example from:
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemu
s/Lecture3/lecture3.html

19-Jun-14 Open Source Summer School 2014 79

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

“Google” Matrix

• Developed by Larry Page & Sergey Brin

• Incorporates the “teleporting” solution

• Defined starting from the web graph matrix – A

• p – damping factor (usually between 0.05..0.15)

19-Jun-14 Open Source Summer School 2014 80

PageRank

• Compute the rank (importance of each page in
the web graph)

• Larry Page & Sergey Brin

• Similar to citation analysis

• The rank of any page, π, is actually the left
eigenvector of M, for the largest eigenvalue:

 π M = λ M

19-Jun-14 Open Source Summer School 2014 81

Computing PageRank

• There are various methods to compute
PageRank (π)

• The simplest method is called the power
(iterative) method

• Start with an initial vector π0 = *1/n … 1/n+

• Compute πk+1 = πk M (k ≥ 0)

• Stop at convergence
– Either πk+1 = πk

– Or ||πk+1 - πk|| < ε

19-Jun-14 Open Source Summer School 2014 82

Exercise 3

• Extend the previous program in order to save
the URLs and the links between these URLs

• Build the matrix A of the crawled web graph

• Build the matrix M

• Compute the PageRank of each page

• Print the URLs of the pages sorted by
PageRank

19-Jun-14 Open Source Summer School 2014 83

References and Further Reading

• Christopher Manning, Prabhakar Raghavan, Hinrich Schuetze:
Introduction to Information Retrieval

• Free PDF:
– http://nlp.stanford.edu/IR-book/information-retrieval-book.html

• Buy @ Amazon:
– http://www.amazon.com/Introduction-Information-Retrieval-

Christopher-Manning/dp/0521865719

• Most of the content in the slides has been taken from Stanford’s

CS276 course on Information Retrieval & Data Mining
– http://www.stanford.edu/class/cs276/

• Many thanks to Prabhakar Raghavan for allowing the re-use of this
content

19-Jun-14 Open Source Summer School 2014 84

http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.amazon.com/Introduction-Information-Retrieval-Christopher-Manning/dp/0521865719
http://www.stanford.edu/class/cs276/

